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Overview

➔ Computational reproducibility in bioinformatics

➔ Genomics gone wrong

➔ Best practices for computational reproducibility

➔ What is a container anyway?

➔ How to get started using containers
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What do we mean by complete computational 
reproducibility?
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● Materials made available by the author allow for the reproduction of the results including 
charts and tables from the raw data 

● Clearly documented and unambiguous steps → can be reproduced in a reasonable time

● Results match exactly

● Works on general purpose computers

Raw 
sequence 

data

Clinical 
metadata

Statistical modeling and 
machine learning

* Disease mechanisms

* biomarkers, 
diagnostics, 
prognostics

* fundamental 
knowledge

Quality 
control 

processing

Genomic 
mapping

Feature identification 
and quantification 
(eg: gene variants, 

regulations)

5-10 stand-alone applications
5-10 major packages 

(each with dependencies)

Typical genomics pipeline



How reproducible is bioinformatics?
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● A 2009 systematic evaluation showing only 2 of 18 articles could 
be reproduced (11%) [1]

● In 2020 an NIH pilot study tried to replicate 5 bioinformatics 
projects but couldn’t reproduce any [2]

● In 2024, a systematic analysis of Jupyter notebooks in biomedical 
articles showed only 879/22578 notebooks (2.9%) gave similar 
results [3]

● Out of 20 studies using a bioinformatics web tool, only 20% were 
considered highly reproducible [4]

1. Ioannidis et al, 2009 ; 2. Zaringhalam and Federer 2020; 3. Samuel and Mietchen 2024;  4. Bora and Ziemann 2023

Overall, only ~10% of bioinformatics papers are reproducible, due to lack 

of data and code sharing, poor documentation and broken code.

No one is checking



A case study in genomics
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Potti et al (2006) had a number of problems:

○ Swapped “case” and “control” labels

○ Some patients duplicated

○ Some results ascribed to wrong drug

○ Lack of documentation and code

○ Likely analysed data with Excel, MatLab and 
other tools

5. Potti et al, 2006; 6. Baggerly & Coombes 2010.



Case study outcome
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● Retraction of at least 9 research papers

● Three clinical trial ran from 2007 to 2010 involving 
117 patients [11]

● Potti was suspended and he later resigned after 
investigations found fraudulent claims in other 
internal documents including grant applications

● CancerGuide Diagnostics company collapsed

● Duke was served eight lawsuits from families of 
deceased trial participants seeking compensation 

● Reputational loss

7. The Cancer Letter, 2015; 8. Kaiser 2015.

● Simple errors in Excel caused sample mix-ups and 
dramatic downstream consequences [5]

● Lack of systematic, automated analysis process

● Lack of transparency, sanity checking and auditing

● Severe lack of documentation

● Pressure to publish

Root cause of the problem



Five pillars framework for computational 
reproducibility

9. Ziemann et al 2023
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Use R Markdown 
Jupyter or another 
notebook!

Use GitHub! 
(or similar)

Document all your 
resources so others 
know how to 
reproduce it!

Make the data 
findable, in a proper 
repository

Containers make reproducibility 
so much easier as all 
dependencies are included



Why we need compute environment control
● Code and data are insufficient to guarantee computational 

reproducibility. We also need the  “environment” - the set of 
software dependencies.

● Eg: R v4.1.1 has 304 system dependencies. Differences in 
these can alter behaviour.
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● Older R/python versions may not work on modern OSs.

● Older software packages might not be available.

● Bioinformatics and machine learning workflows involve 
highly complex software configurations. 

● Difficult and time-consuming to reproduce the compute 
environment, and scripts will probably still fail to run 
properly.

IDEA: Compute environment 
should be considered part of the 

data retention responsibilities 
(5+ years after publication).

10. Vallet et al, 2022; 11. Akalin 2018



Pillar 3: Compute environment control

● “Virtual machines” are guest operating systems, which allow 
us to run software separate from the host.

● Containers are more lightweight as they don’t replicate 
components from the host.

● Docker is the most used container app.

● Apptainer works on shared systems like HPCs.

● Researchers can make a Docker image containing all of the 
software required for each project.

● Images can be shared on Dockerhub or biocontainers, then 
archived to Zenodo.

VM

Docker container

sudo apt update && sudo apt install docker.io -y # install docker

sudo docker run -it jsmith/myproject bash # enter container

Rscript -e 'rmarkdown::render("analysis.Rmd")' # execute workflow

exit # exit container

docker cp $(docker ps -aql):/myproject/analysis.html . # copy report to host system

firefox example.html # inspect results 10

A complicated 
bioinformatics workflow 
can be reproduced in just a 
few minutes with Docker



What about Conda?
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Feature

Type Containerization (OS-level virtualization) Package & environment manager

Scope Encapsulates the entire OS environment: 
libraries, dependencies, executables, 
and even the kernel interface.

Manages Python/R packages and binaries, 
but relies on the host OS and system 
libraries.

Isolation level Very high – full sandboxed environment. Moderate – isolated package environments, 
but shares system libraries and drivers.

Reproducibility Very high — container image can be 
rebuilt exactly, anywhere.

Moderate — environment.yml can lead to 
version drift or binary incompatibility across 
OSes.

Performance Near-native speed, minimal overhead. Near-native speed, but less isolation.

Portability Excellent — “works anywhere with 
Docker or Singularity installed.”

Limited — Conda envs may fail to resolve or 
install identically across systems.



Practicing what we preach

● Publicly available data

● Code on GitHub and Zenodo

● Docker image on Zenodo

● R/Shiny tool for interacting

● Validated data-to-manuscript workflow

12. Ziemann et al, 2024 12

sudo apt update && sudo apt install docker.io -y # install docker

sudo docker run -it mziemann/background bash # enter container

cd analysis

Rscript -e 'rmarkdown::render("main.Rmd")' # execute workflow

exit # exit container

docker cp $(docker ps -aql):/background docker_results  # copy report to host system
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Getting started with containers

1. Install Docker (or Apptainer)

2. Make an inventory of the software used in a project

3. Write a Dockerfile that loads necessary software, add it 
to your GitHub repo

4. Build Docker image (go to #3 to fix any errors)

5. Write a script in such a way that it can access the raw 
data (automatically download from a public repository 
is best) and analyse it

6. Run the script inside the container (go to #3 or #5 to fix 
any errors)

7. Return the data to host computer, check it

8. Share image on Dockerhub and archive to Zenodo, 
institutional RDS

Tutorial on GitHub
https://github.com/markziemann/docker_for_r_tutorial
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Anatomy of a Dockerfile
FROM bioconductor/bioconductor_docker:3.21-R-4.5.2

# Update apt-get
RUN apt-get update -y \
        && apt-get upgrade -y \
        && apt-get install -y nano git \
        ## Remove packages in '/var/cache/' and 'var/lib'
        ## to remove side-effects of apt-get update
        && apt-get clean \
        && rm -rf /var/lib/apt/lists/*

# Install CRAN packages
RUN Rscript -e 'install.packages(c("gplots","eulerr","kableExtra"))'

# Install bioconductor packages
RUN Rscript -e 'BiocManager::install(c("getDEE2","DESeq2"))'

# get a clone of the codes using HTTPS
RUN git clone https://github.com/markziemann/docker_for_r_tutorial.git

# Set the container working directory
ENV DIRPATH=/docker_for_r_tutorial
WORKDIR $DIRPATH

Choose the base image

Install system and 
python packages here

Get all R 
packages

Get project code
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Building and running a Docker image

# Build an image based on a Dockerfile
docker build -t mziemann/docker_for_r_tutorial .

# get Rstudio server IDE through the web browser (http://localhost:8787) 
docker run \

-e PASSWORD=bioc \
-p 8787:8787 \
mziemann/docker_for_r_tutorial:latest

# or run in terminal mode - may be best option for servers
docker run -it \
    -e DISPLAY=localhost:10.0  \
    -v $HOME/.Xauthority:/root/.Xauthority:rw  \
    --network host  \
    mziemann/docker_for_r_tutorial bash

# inside the container, pull the latest project codes
git pull

# open R and start working or run a script
Rscript -e "rmarkdown::render('workflow.Rmd')"

# run this on the host machine to check output
docker cp $(docker ps -aql):/docker_for_r_tutorial docker_data
firefox docker_data/workflow.html

Replace  “mziemann” with your username. Replace “docker_for_r_tutorial” with the name of your project

Other useful docker commands

# show the images available
docker images

# see which containers are running (have run)
docker ps

# delete a container
docker rm <container ID>

# delete an image
docker rmi <image ID>

# clean up closed containers and cached data
docker system prune -f

http://localhost:8787
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Sharing and archiving a Docker image

# Optional - share image on Docker Hub
docker login
docker push mziemann/docker_for_r_tutorial

# Save an image for archiving on institutional RDS or Zenodo (~5 mins)
docker save mziemann/docker_for_r_tutorial > docker_for_r_tutorial.tar

# Load an archived image
docker load -i docker_for_r_tutorial.tar



Limitations

➔ Build process works today, but might not work tomorrow

➔ Contents of an image can’t easily be verified

➔ While Docker is useful to containerise workflows, it can’t guarantee reproducible builds - this is 
where Guix and Nix are proposed to be a solution

17



Apptainer workflow

Ask your sysadmin to install it

Build directly from a saved docker image:

apptainer build myimage.sif docker-archive:myimage.tar

Or build from an apptainer definition file:

apptainer build myimage.sif definition.def

Then run a container

apptainer run --writable-tmpfs myimage.sif bash
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Conclusion
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● Together with other best practices, containers enable 
complete computational reproducibility of complex workflows

● There is a significant learning curve and work involved, but it 
makes reproducibility much easier

● Containers should be standard practice in bioinformatics and 
machine learning

● ARDC is supporting Australian researchers with additional 
infrastructure

https://medium.com/data-science/scientific-data-analysis-pipelines-and-reproducibility-75ff9df5b4c5
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