
Achieving complete
computational research
reproducibility using containers
(and why we need it)
Mark Ziemann PhD, GCHELT

mark.ziemann@burnet.edu.au

AIMOS 2025

Licence: CC-BY-4.0

https://interoperable-europe.ec.europa.eu/licence/creative-commons-attribution-40-international-cc-40

1

AT BURNET INSTITUTE, WE PROUDLY ACKNOWLEDGE THE BOON

WURRUNG PEOPLE OF THE KULIN NATIONS AS THE TRADITIONAL

CUSTODIANS OF THE LAND ON WHICH OUR OFFICE IS LOCATED

AND RECOGNISE THEIR CONTINUING CONNECTION TO LAND,

WATERS AND COMMUNITY. WE ACKNOWLEDGE ABORIGINAL AND

TORRES STRAIT ISLANDER PEOPLES AS AUSTRALIA’S FIRST

PEOPLES AND ACKNOWLEDGE THAT SOVEREIGNTY WAS NEVER

CEDED. WE PAY OUR RESPECT TO ELDERS PAST AND PRESENT,

AND EXTEND THAT RESPECT TO ALL FIRST NATIONS PEOPLE.

2

Overview

➔ Computational reproducibility in bioinformatics

➔ Genomics gone wrong

➔ Best practices for computational reproducibility

➔ What is a container anyway?

➔ How to get started using containers

3

What do we mean by complete computational
reproducibility?

4

● Materials made available by the author allow for the reproduction of the results including
charts and tables from the raw data

● Clearly documented and unambiguous steps → can be reproduced in a reasonable time

● Results match exactly

● Works on general purpose computers

Raw
sequence

data

Clinical
metadata

Statistical modeling and
machine learning

* Disease mechanisms

* biomarkers,
diagnostics,
prognostics

* fundamental
knowledge

Quality
control

processing

Genomic
mapping

Feature identification
and quantification
(eg: gene variants,

regulations)

5-10 stand-alone applications
5-10 major packages

(each with dependencies)

Typical genomics pipeline

How reproducible is bioinformatics?

5

● A 2009 systematic evaluation showing only 2 of 18 articles could
be reproduced (11%) [1]

● In 2020 an NIH pilot study tried to replicate 5 bioinformatics
projects but couldn’t reproduce any [2]

● In 2024, a systematic analysis of Jupyter notebooks in biomedical
articles showed only 879/22578 notebooks (2.9%) gave similar
results [3]

● Out of 20 studies using a bioinformatics web tool, only 20% were
considered highly reproducible [4]

1. Ioannidis et al, 2009 ; 2. Zaringhalam and Federer 2020; 3. Samuel and Mietchen 2024; 4. Bora and Ziemann 2023

Overall, only ~10% of bioinformatics papers are reproducible, due to lack

of data and code sharing, poor documentation and broken code.

No one is checking

A case study in genomics

6

Potti et al (2006) had a number of problems:

○ Swapped “case” and “control” labels

○ Some patients duplicated

○ Some results ascribed to wrong drug

○ Lack of documentation and code

○ Likely analysed data with Excel, MatLab and
other tools

5. Potti et al, 2006; 6. Baggerly & Coombes 2010.

Case study outcome

7

● Retraction of at least 9 research papers

● Three clinical trial ran from 2007 to 2010 involving
117 patients [11]

● Potti was suspended and he later resigned after
investigations found fraudulent claims in other
internal documents including grant applications

● CancerGuide Diagnostics company collapsed

● Duke was served eight lawsuits from families of
deceased trial participants seeking compensation

● Reputational loss

7. The Cancer Letter, 2015; 8. Kaiser 2015.

● Simple errors in Excel caused sample mix-ups and
dramatic downstream consequences [5]

● Lack of systematic, automated analysis process

● Lack of transparency, sanity checking and auditing

● Severe lack of documentation

● Pressure to publish

Root cause of the problem

Five pillars framework for computational
reproducibility

9. Ziemann et al 2023
8

Use R Markdown
Jupyter or another
notebook!

Use GitHub!
(or similar)

Document all your
resources so others
know how to
reproduce it!

Make the data
findable, in a proper
repository

Containers make reproducibility
so much easier as all
dependencies are included

Why we need compute environment control
● Code and data are insufficient to guarantee computational

reproducibility. We also need the “environment” - the set of
software dependencies.

● Eg: R v4.1.1 has 304 system dependencies. Differences in
these can alter behaviour.

9

● Older R/python versions may not work on modern OSs.

● Older software packages might not be available.

● Bioinformatics and machine learning workflows involve
highly complex software configurations.

● Difficult and time-consuming to reproduce the compute
environment, and scripts will probably still fail to run
properly.

IDEA: Compute environment
should be considered part of the

data retention responsibilities
(5+ years after publication).

10. Vallet et al, 2022; 11. Akalin 2018

Pillar 3: Compute environment control

● “Virtual machines” are guest operating systems, which allow
us to run software separate from the host.

● Containers are more lightweight as they don’t replicate
components from the host.

● Docker is the most used container app.

● Apptainer works on shared systems like HPCs.

● Researchers can make a Docker image containing all of the
software required for each project.

● Images can be shared on Dockerhub or biocontainers, then
archived to Zenodo.

VM

Docker container

sudo apt update && sudo apt install docker.io -y # install docker

sudo docker run -it jsmith/myproject bash # enter container

Rscript -e 'rmarkdown::render("analysis.Rmd")' # execute workflow

exit # exit container

docker cp $(docker ps -aql):/myproject/analysis.html . # copy report to host system

firefox example.html # inspect results 10

A complicated
bioinformatics workflow
can be reproduced in just a
few minutes with Docker

What about Conda?

11

Feature

Type Containerization (OS-level virtualization) Package & environment manager

Scope Encapsulates the entire OS environment:
libraries, dependencies, executables,
and even the kernel interface.

Manages Python/R packages and binaries,
but relies on the host OS and system
libraries.

Isolation level Very high – full sandboxed environment. Moderate – isolated package environments,
but shares system libraries and drivers.

Reproducibility Very high — container image can be
rebuilt exactly, anywhere.

Moderate — environment.yml can lead to
version drift or binary incompatibility across
OSes.

Performance Near-native speed, minimal overhead. Near-native speed, but less isolation.

Portability Excellent — “works anywhere with
Docker or Singularity installed.”

Limited — Conda envs may fail to resolve or
install identically across systems.

Practicing what we preach

● Publicly available data

● Code on GitHub and Zenodo

● Docker image on Zenodo

● R/Shiny tool for interacting

● Validated data-to-manuscript workflow

12. Ziemann et al, 2024 12

sudo apt update && sudo apt install docker.io -y # install docker

sudo docker run -it mziemann/background bash # enter container

cd analysis

Rscript -e 'rmarkdown::render("main.Rmd")' # execute workflow

exit # exit container

docker cp $(docker ps -aql):/background docker_results # copy report to host system

13

Getting started with containers

1. Install Docker (or Apptainer)

2. Make an inventory of the software used in a project

3. Write a Dockerfile that loads necessary software, add it
to your GitHub repo

4. Build Docker image (go to #3 to fix any errors)

5. Write a script in such a way that it can access the raw
data (automatically download from a public repository
is best) and analyse it

6. Run the script inside the container (go to #3 or #5 to fix
any errors)

7. Return the data to host computer, check it

8. Share image on Dockerhub and archive to Zenodo,
institutional RDS

Tutorial on GitHub
https://github.com/markziemann/docker_for_r_tutorial

14

Anatomy of a Dockerfile
FROM bioconductor/bioconductor_docker:3.21-R-4.5.2

Update apt-get
RUN apt-get update -y \
 && apt-get upgrade -y \
 && apt-get install -y nano git \
 ## Remove packages in '/var/cache/' and 'var/lib'
 ## to remove side-effects of apt-get update
 && apt-get clean \
 && rm -rf /var/lib/apt/lists/*

Install CRAN packages
RUN Rscript -e 'install.packages(c("gplots","eulerr","kableExtra"))'

Install bioconductor packages
RUN Rscript -e 'BiocManager::install(c("getDEE2","DESeq2"))'

get a clone of the codes using HTTPS
RUN git clone https://github.com/markziemann/docker_for_r_tutorial.git

Set the container working directory
ENV DIRPATH=/docker_for_r_tutorial
WORKDIR $DIRPATH

Choose the base image

Install system and
python packages here

Get all R
packages

Get project code

15

Building and running a Docker image

Build an image based on a Dockerfile
docker build -t mziemann/docker_for_r_tutorial .

get Rstudio server IDE through the web browser (http://localhost:8787)
docker run \

-e PASSWORD=bioc \
-p 8787:8787 \
mziemann/docker_for_r_tutorial:latest

or run in terminal mode - may be best option for servers
docker run -it \
 -e DISPLAY=localhost:10.0 \
 -v $HOME/.Xauthority:/root/.Xauthority:rw \
 --network host \
 mziemann/docker_for_r_tutorial bash

inside the container, pull the latest project codes
git pull

open R and start working or run a script
Rscript -e "rmarkdown::render('workflow.Rmd')"

run this on the host machine to check output
docker cp $(docker ps -aql):/docker_for_r_tutorial docker_data
firefox docker_data/workflow.html

Replace “mziemann” with your username. Replace “docker_for_r_tutorial” with the name of your project

Other useful docker commands

show the images available
docker images

see which containers are running (have run)
docker ps

delete a container
docker rm <container ID>

delete an image
docker rmi <image ID>

clean up closed containers and cached data
docker system prune -f

http://localhost:8787

16

Sharing and archiving a Docker image

Optional - share image on Docker Hub
docker login
docker push mziemann/docker_for_r_tutorial

Save an image for archiving on institutional RDS or Zenodo (~5 mins)
docker save mziemann/docker_for_r_tutorial > docker_for_r_tutorial.tar

Load an archived image
docker load -i docker_for_r_tutorial.tar

Limitations

➔ Build process works today, but might not work tomorrow

➔ Contents of an image can’t easily be verified

➔ While Docker is useful to containerise workflows, it can’t guarantee reproducible builds - this is
where Guix and Nix are proposed to be a solution

17

Apptainer workflow

Ask your sysadmin to install it

Build directly from a saved docker image:

apptainer build myimage.sif docker-archive:myimage.tar

Or build from an apptainer definition file:

apptainer build myimage.sif definition.def

Then run a container

apptainer run --writable-tmpfs myimage.sif bash

18

Conclusion

19

REFERENCES
1. Ioannidis et al, 2009, DOI:10.1038/ng.295
2. Zaringhalam & Federer 2020, DOI:10.5281/zenodo.3818329
3. Samuel & Mietchen 2024, DOI:10.1093/gigascience/giad113
4. Bora and Ziemann 2023, DOI: 10.31219/osf.io/r6kxg
5. Potti et al, 2006, DOI:10.1038/nm1491
6. Baggerly & Coombes 2010, DOI:10.1214/09-AOAS291
7. The Cancer Letter, https://cancerletter.com/the-cancer-letter/20150123_2/
8. Kaiser 2015 DOI:10.1126/science.aad7410.
9. Ziemann et al, 2023, DOI:10.1093/bib/bbad375
10. Valet et al, DOI:10.1038/s41597-022-01720-9
11. Akalin 2018.
https://medium.com/data-science/scientific-data-analysis-pipelines-and-repr
oducibility-75ff9df5b4c5
12. Ziemann et al, 2024, DOI:10.1093/bioadv/vbae159

mark.ziemann@burnet.edu.au

● Together with other best practices, containers enable
complete computational reproducibility of complex workflows

● There is a significant learning curve and work involved, but it
makes reproducibility much easier

● Containers should be standard practice in bioinformatics and
machine learning

● ARDC is supporting Australian researchers with additional
infrastructure

https://medium.com/data-science/scientific-data-analysis-pipelines-and-reproducibility-75ff9df5b4c5
https://medium.com/data-science/scientific-data-analysis-pipelines-and-reproducibility-75ff9df5b4c5

